
Introduction to Stata

Getting Started with Stata Programming

Nicholas P. Nicoletti, Ph.D.

Missouri Southern State University

International and Political Affairs

June 24, 2019

Abstract

This document is intended as a beginners guide to research with Stata. It was
originally developed for the University at Buffalo (SUNY) Political Science Depart-
ment PSC 531 Lab. This guide may be used in conjunction with the referenced .do
files and data sets.

Contents

1 Introduction: What is Stata? 3

1.1 The Basics . 3

1.2 The Importance of Logging . 4

1.2.1 Directories . 5

1.2.2 Creating and Maintaining Log Files 6

1.3 “Programming on the Fly” vs. Do-Files . 7

1.4 Opening and Saving Stata (.dta) Files . 8

1.4.1 Importing Data . 10

1.4.2 Memory . 13

1.5 Do-Files . 14

1.6 Help . 15

1.7 Plug-ins . 17

2 Command Syntax 17

2.0.1 Basic Command and Operators . 19

3 Working with Data 21

3.1 Building Datasets from ASCII Text Files Using Do-Files and Dictionary Files 21

3.2 Labeling Variables . 26

3.3 Summary Statistics and Histograms . 27

3.4 Generate and Recode . 28

4 Hypothesis Testing 31

5 Introduction to Correlation and Regression 35

5.1 Simple Post Estimation Commands . 36

6 Advanced Regression Models 39

1

7 Limited Dependent Variables Regression Models 40

7.1 Logistic Regression . 41

7.2 Logit Example . 42

7.3 Probit Example . 46

8 Graphing in Stata: A Simple Example 47

2

1 Introduction: What is Stata?

Stata is a statistical software package used by scholars in many fields; it is most common

in the Social Sciences such as Political Science, Economics, and Sociology (Teele, 2010).

Stata is primarily run from a “command prompt”, although users can employ the “drop-

down” menus to perform most of the common types of analysis. This introduction will

focus on using Stata in the command prompt form. The basic structure of any dataset is

a series of rows and columns (i.e. matrices). Users manipulate data with various com-

mands which transform raw data into meaningful statistics which can be interpreted by

the researcher. Stata, although similar to Microsoft Excel, is much more powerful and

allows the user to store all commands in a log file — often called a .do file, after is its

program extension. Stata can generate tables, graphs, and be used to apply various statis-

tical models. The program also integrates well with the typesetting program LATEX for the

seamless creation of stylish output/results. On a quick note, throughout the document

all Stata code will be placed between ||— as if they were absolute values. This is so you

can easily identify Stata code in the text of this document. You do not need to include the ||

in your Stata code, it is only there to make the commands easier to read in the document’s text.

1.1 The Basics

The Stata display will contain four primary windows:

1. Command Window

2. Results Window

3. Review Window

4. Variable Window

The command window is where the user enters commands for Stata to execute. Sim-

ply type a command and hit enter. The results of the command will appear in the Results

Window; this pane will display the entered command, followed by its corresponding

3

output/results. The content can be copied and pasted into other editors, but cannot be

edited on the screen. Although one can copy and paste a table from Stata’s Results Win-

dow directly into word, it is recommended that you refrain from doing so. The variable

names will be hard to interpret for those who are not familiar with your codebook and

none of the information will be conveniently displayed. Your audience (especially your

professors and reviewers) will not want to interpret raw Stata output. Later in this guide

I will show you how to take most of your Stata output/results and seamlessly plant it

into a LATEX document. If you are not using LATEX create stylish tables in Microsoft Excel

or Word. The Review Window displays a list of commands that you have already com-

pleted. You can easily rerun a command you have already completed with a few steps.

First, highlight a command in the Review Window, the command will then appear in the

Command Window. Now you can click enter and run the command. Finally, the Variable

window will display the list of all variables in your currently loaded dataset. This win-

dow is empty when you first start Stata and contains content after you have uploaded

data into memory.

1.2 The Importance of Logging

Every time you begin a new project you should begin a new Log file dedicated to that

project. The log file captures all the printed text in the Results Window — this includes

the commands you have typed and the output/reslts Stata has displayed. Of course it

will also display all of your errors and failed attempts. A log file is important to research

with Stata because often times you will forget many of the commands that you ran in

your last session. You may not remember the different regression models you tried with

different variable sets. You might have used a command for the first time last session

that you do not remember now. If you have a log file, this will not be a problem for you

because you will be able to reference your sheet and recreate your output/results.

4

1.2.1 Directories

Before we look at logging it is important to outline Directories in Stata. A directory is

just a folder somewhere in your computer. For example, usually your hard drive is called

the C:\ drive. Directories help to keep your folder organized; obviously you do not keep

all of your files in the same place on your computer (occasionally you will meet the user

that keeps everything on their desktop). Stata has a default directory within its folder on

the C:\ drive. You will want to change the Directory Path, which is the series of folders

where you want your files stored. There are two primary commands you will need when

dealing with Directories. First, you will need the cd or “change directory” command.

This command will allow you to change where Stata stores the documents you will be

using, including the log file which we will cover in a moment.

I am using my flash drive to store all the documents associated with this document —

this drive, on my computer (it would be different on yours), is located in the G:\ direc-

tory. To change the directory the command would be: | cd G:\ |. However, I do not want

Stata to use the entire G:\ to store files; I want to place my files into a folder. To do this I

simply specify the full directory path. The code would be: | cd G:\Log |. This will change

the Stata directory to a folder called Log on by G:\ drive. This is important for log files

because whatever directory you are in, is where the log file will be stored — as well as

other Stata files.

The second command you should be associated with with is dir. If you are not familiar

with what folders are available to you in the current directory you can type dir and it will

list all the folders in the current directory. You can then use the cd option to change the

directory to the desired location. Now we can move on to creating a log file.

5

1.2.2 Creating and Maintaining Log Files

To create and use log files you will need the following commands:

• | log using my log file name |— This will tell Stata to open a log file which will record

everything you type in the command window and output you see on the screen. It

will also be necessary to tell Stata in what directory to place your log file (see above).

• | log close |— This will turn logging off.

• | log using my log file name, replace |— This will tell Stata to overwrite the existing

log file you are using.

• | log using my log file name, append |— This will tell Stata to append (add on to) an

existing log file (recommended when continuing a current project).

• | lof off |— Temporarily stops logging.

• | log on |— Resumes logging.

On a quick note, log files can also be created using the Graphical User Interface (GUI)

menu in Stata 11. Using the “Log/Begin/Close/Suspend/Resume” button on the

tool bar, you will be able to create a log file, choose which directory to place your file, the

name of your file, and whether to overwrite or append existing files — just as you would

in any PC or MAC-Based GUI.

Logs can be edited later in a text editor such as Notepad or Wordpad. However, to

make the log file readable in these programs we must change it to a .txt file — otherwise

it will remain the default Stata .smcl file. To do this you will use the command: | translate

my log file name.smcl log file name.txt |. Now you will be able to edit the file in a text editor

and also create a Do-File from its contents. Do-Files will be discussed further later, but

this is a good time to make a vital point about “programming on the fly” vs. Do-Files.

6

1.3 “Programming on the Fly” vs. Do-Files

“Programming on the Fly” is a common term used to describe when a user types com-

mands into Stata’s command prompt without “running” them from a .do file. Program-

ming on the fly is useful when one is playing with the data. Many times you will make

errors and Stata will not be able to execute the botched command. However, when work-

ing in Stata it is strongly recommended you use a .do file. When you have run a command

that is useful you can easily export it into a .do file. Recall that all other commands will

be stored in your log file and can be exported into a Do-File later.

Stata will continually show all of your commands in the Review box in the upper-left

hand side of the screen (see image below). Simply right click on the command you want

to export to the .do editor and then click on “Send to Do-File Editor”. This action will

open a new .do file editor (if one is not already open) and place your command on the

next open line. Figure 1 shows the Review box, Figure 2 shows the the drop-down menu,

and Figure 3 shows Stata’s Do-File Editor.

The command displayed is called | set mem |. Sometimes the default memory Stata

allocates is not enough to use larger datasets. The set mem command allows the user to

change how much memory Stata allocates to your data. Typing “set mem 500m” sets the

usable memory to 500 MB, which is usually sufficient for large datasets. The | set mem,

perm | command allows the user to permanently set the memory to a desired allocation.

Do-Files are a very important part of the Stata experience. Saving all commands used

to manipulate data or make a calculation will make it easy to reproduce your results

very quickly in the future. Creating .do and log files are also a great tool for students;

sometimes you will run into research problems — maybe with Stata commands or with

your statistical model — a log or .do file will easily allow you to show your work to a

more experienced scholar which can then assist you with your issue. Do-files will be

7

Figure 1: Review Box Figure 2: Right-Click Drop-Down

discussed more later, but the major point of this section is that log files and .do files are a

necessary and important part of research with Stata.

1.4 Opening and Saving Stata (.dta) Files

The final section of this part contains what you need to know about data files and Stata.

First, Stata is a great data/variable manipulation tool; however, it is not always the best

program to use when compiling your data. Many times it is preferable to use a program

like Microsoft Excel to contain and compile your dataset. The Stata data editor is limited

in many ways to what it can perform. Nevertheless, it is strongly recommended that you

keep a copy of your un-manipulated raw data file. In the course of manipulating data

in Stata you will change and transform your variables. Many of these changes cannot

be undone! Having a copy of untouched raw data will be very advantageous when you

need to restore a variable that was on the interval scale until you transformed it into a

dummy variable with Stata (this, or something like it, will happen to you at some point in

8

Figure 3: Do-File Editor

9

time — save yourself, keep a backup!).

Raw data files can be contained in many different types of files — these are all es-

sentially text files under the The American Standard Code for Information Interchange

(ASCII - pronounced “ask-ee”). The most common for data retention are the .csv (comma

separated values or comma delineated values) and simple tab delineated text files. I use

.csv files because Microsoft Excel can read/save these files, while also allow a user to ma-

nipulate the data using standard Excel commands. I recommend that you begin with .csv

files when compiling your data and also save all raw data files in this format. Stata has no

problem importing .csv files and they are also compatible with all other statistical pack-

ages (i.e. SPSS, Minitab, SAS, etc.). Moreover, while Stata 11 can read all earlier versions

.dta files, the same is not true for earlier versions. For example Stata 8 cannot read a Stata

11 .dta file — you will receive an error. But all versions of Stata can read .csv files. Stata

11 can also save .dta file in older formats if necessary using the command: | saveold my

file name |.

1.4.1 Importing Data

Data from a any spreadsheet (.xls, .csv, etc.) can easily be imported into Stata. If your

data comes from another stats program file you will have to convert it to a .csv or .dta file

first. If your data is in the default Excel .xls format convert it to .csv first. Also make sure

to avoid placing spaces in your variable names and making them too long — Stata may

have trouble importing the variable names otherwise. For example, if I have a variable

named GDP Per Capita, I may rename it gdppercap — but remember to change the vari-

able name back when presenting the output/results to an audience. Thus, variable names

should contain no spaces and should be located in a single row separating the data from

the variable names.

10

To import the .csv files you will use the | insheet | command which transfers the

spreadsheet file into Stata. You will need to specify the entire directory path from Do-

Files, but if you are programming on the fly, and you told Stata what directory you want

to be in, and your data is in that directory, you can specify the name of the file only. Here

is an example of the code:

• | insheet using my file name.csv, comma | — use the comma specification if it is a

.csv otherwise you do not need this addition. You must specify the file extension at

the end of the file name — in this case it is a .csv file.

• | insheet using my file name with full directory path.csv, comma | — you will need

to specify the full directory path if you have not set up your directory properly in

Stata.

Certain things in Stata can be done quicker using the GUI — especially if your direc-

tory path is really long and contains multiple characters. You can simply click File, Open

(or use the folder icon on the toolbar) and search for the directory your data is in and

open it from there. However, when compiling a Do-File and using log files, telling Stata

what directory it should work from synchronizes your project so everything is organized

in a preferable way.

There is another way to import data into Stata — I tend to use this way the most and

find it to be the most efficient, although I still recommend that your set Stata in the proper

directory. First, have you spreadsheet open. Second, click on the data editor button

in the Stata toolbar. The Stata Data Editor will open up and you can view it in Figure 4.

Copy the entire contents of your spreadsheet and paste them into the first cell of Stata’s

data editor. Stata will then ask you if the first row of the pasted data contain variable

names, if it does click the appropriate box which is depicted in Figure 5.

11

Figure 4: Stata Data Editor

Figure 5: First Row Variable Prompt

12

When you close the data editor Stata will load your variables into memory and they

will appear in the Variables Window. You are not finished yet. Now you need to save

your data as a Stata .dta file. As with everything in Stata this can be done using command

line and GUI. To use the command line simply type | save my file name | and Stata will

save the file in the directory you have specified (see above). You can also use the GUI

interface by clicking File, Save or the save icon on the toolbar. You can then choose which

directory you wish to save the file to. Just as you save a raw copy of your data in a .csv

file, it is also recommended that you save a second copy of your .dta file — just in case.

Teele (2010) recommends saving a primary file and a “working file”. Your working file is

what you will use to manipulate data during your project and your “original file” is your

untouched backup. For example use the commands:

• | save my file name-original |— This is the untouched .dta file.

• | save my file name-working |— This is the file you will use.

• | save file name-working, replace |— The replace command will overwrite the work-

ing file you have been manipulating.

• | saveold |— Saves the file in older versions of Stata.

1.4.2 Memory

Sometimes you will need to increase the amount of memory Stata allocates to your data.

For example the American National Election Study (ANES) dataset is far to large for

the default Stata memory allocation of 10MB. Below are the commands necessary to set

Stata’s memory allocation.

• | set mem number of bytes m |— Sets the memory to your choosing in megabytes.

• | set mem number of bytes m, perm |— Sets memory to your choosing in megabytes

permanently.

• | Example: set mem 500m |— Set the memory allocation to 500 MB.

13

1.5 Do-Files

A Do-File is a Stata file with the program extension .do (I have called then .do files or Do-

Files). These contain a set of commands that can be read and run by Stata. You can easily

create a new Do-File by clicking on the “New Do-File Editor” icon button. This will

open up the Do-File Editor depicted in Figure 3. You can also use the command | doedit

| in the command prompt window. When you have lines of command in a Do-File you

can highlight these commands and click on the “Execute (do)” icon in the Do File

Editor toolbar. Stata will then execute your command and present your results as you

typed the command into the command line window. You can also create Do-File in a text

editor such as WinEdt or Notepad. As noted above in Figures 1 and 2, you can also send

commands from the Review Window to the Do-Editor by right clicking on the command

and then clicking “Send to Do-File Editor”.

You can also annotate a Do-File or make notes within a Do-File by opening and closing

a set of asterisks (*). For example, *Note: The above command is for a pooled cross sectional

time series dataset*. Notice how I opened and closed the set of *. Stata will ignore lines

with an * in front, but you also need to close it with an * or Stata will ignore the rest of

your Do-File.

Do-Files STOP when there is an error in the code. Sometimes we have to tell Stata to

ignore an error in our code. What if we need to tell Stata to drop a variable as it runs the

analysis. This can be done with the capture command. For example writing, | capture

drop variable-name | within your .do file allows Stata to drop the variable if it exists or ig-

nore the command if there is an error.

The Do-File Editor also allows us to tell Stata not to execute a command until it sees

a certain punctuation — this is called a delimiter. The delimiter command can be used

14

when we want to pause a Do-File or have the line of command span more than one line.

To do this use the | #delimit ; | command — here we are telling Stata not to execute a

command until it sees the ; punctuation. You can also turn the delimit command on and

off (which is really important because you will not want to delimit everything); this can

be done using the | #delimit cr | command. This will stop the need to use the punctuation

to continue to executer commands. Make sure to use this command otherwise Stata will

keep scrolling through the Do-File without executing any other commands that come

after.

1.6 Help

Stata has a decent set of help files built into the program. To use the Stata 11 help files

type: | help command-name |. Stata will open a new window with all the help files asso-

ciated with the command you typed in. For example, typing | help reg | will open the

widow depicted in Figure 6. The help file tells the user that the “reg” command performs

a linear regression and then lists the exact syntax of the command. In this case, to use

the reg command a user must specify: | reg dependent variable (depvar) [set of independent

variables (indepvars)] [if] [in] [weight] [,options] |. The help window then explains each of

the different options with links to the dedicated help page of each one. Lastly, the help

file lists commands associated with the command the user needed help with; in this case

Stata lists different types of regression commands, such as logit, probit, and tobit — which

we will become familiarized with later. If the user is not familiar with the command they

need assistance with they can search through the help files once Stata opens the help dia-

log box; to do this simply type: | help | and use the search box

to find the commands associated with the operation you want to perform.

15

Figure 6: Help Window

16

1.7 Plug-ins

Stata is not “open source” software such as the free statistical package R; however, often

times scholars write code for use with Stata which can make difficult operations easier.

For example, probit and logit coefficients cannot be interpreted the way that Ordinary

Least Squares (OLS) linear regression coefficients can; whereas OLS unstandardized coef-

ficients can be interpreted as a one unit increase in X is associated with a coefficient sized

increase (decrease) in Y, logit and probit coefficients must be converted into predicted

probabilities. Tomz, Wittenberg and King (2003), from Harvard University, have devel-

oped a set of Stata commands contained in the plug-in Clarify, which allows users to eas-

ily generate predicted probabilities with a few simple commands. Finding and installing

these Stata plug-ins is easy. Use the command: | findit program name |. For example, to

find and install Clarify one would type: | findit clarify |. Stata will then open up a new

window containing all of the associated Stata internet files that contain the word “clar-

ify”. Notice in Figure 7 that the Clarify plug-in is second package listed. The user will

then click on the Clarify package to bring up another window which contains an “install”

link. Clicking on “install” will prompt Stata to automatically install the package.

A common place to find useful Stata plug-ins is the Social Science Research Council

(SSRC). Type the command | ssc install program name | to install a program from the SSRC

website. If you do not know which program you want to install type the command: | ssc

hot | to pull up a list of SSRC Stata plug-ins. Click on each program for a description of

its use. To install the packages follow the same instructions as above.

2 Command Syntax

Thus, far we have been using Stata command syntax for various operations, such as

changing directories and importing .csv files. This section will explain more on the proper

17

http://gking.harvard.edu/files/abs/making-abs.shtml

Figure 7: Findit-Clarify Window

18

Stata syntax and teach you how to use Stata to begin manipulating data. All Stata com-

mands must be written in proper syntax to be executed. Syntax is the sentence structure

or language that Stata understands. Stata syntax is structured in the following way: | com-

mand arguments, options |. The “command” is the name of the command you want Stata

to execute. The “arguments” are things like variables that you want the command to ex-

ecute an operation over. The “options” are additional pieces of information that you can

give to Stata in order to execute ancillary operations. The “options” must always come

after a “,” and in general there is only one comma per command (Teele, 2010).

We have already covered several examples of Stata syntax. For example, typing: |

help reg | tells Stata that you want it to open up the help window containing the help

file on the reg command. As stated earlier, the help command is perfect for finding the

proper Stata syntax for any command. Reference Figure 6. At the top of the file you will

see the heading Syntax. Under this heading is the proper Stata language for executing the

“reg” command. The next section lists the relevant “options” associated with the “reg”

command.

2.0.1 Basic Command and Operators

Stata works with two different types of variables: (1) numeric variables (continuous, inter-

val, categorical/dichotomous) and (2) string variables (combination of alphabetic and/or

numeric). In order to manipulate these variables and use the commands in Stata it is im-

portant to know what operators Stata uses, as intuition is not always what you would

think.

Operators:

• + Addition

• - Substraction

• * Multiplication

19

• / Division

• ∧ Raise to a power

• > Greater than

• < Less than

• >= Greater than or equal to

• <= Less than or equal to

• == Equal to (the operator for equality is a pair of equal signs)

• ∼= or ! Not equal to or

• & and

• | or

• ∼ Not

• abs(x) Absolute value

• exp(x) Exponent

• ln(x) Natural logarithm

• log(x) Natural logarithm

• log10(x) Logarithm to the base of 10

• sqrt(x) Square root

Basic Mathematical Operation

• | display 2+2 |

• | di sqrt(2)/2 |

• | di 4*4 |

Reference the “Basic Mathematical Operation” list above. This list contains the dis-

play command. The “display” command tells Stata to display strings and values of scalar

expressions. Notice that the first two letters of the command are underlined. If one were

to open up the help file associated with the display command they would find that the

first two letters of the command are also underlined. This indicates that the command

20

can be abbreviated when programming on the fly. For example, typing | di 2+2 | would

be the same as typing | display 2+2 |. Many Stata commands have a similar shortcut. For

example the Stata command | generate |, used to create a new variable, can be abbrevi-

ated using | gen |. All of the Stata abbreviations can be found within the command’s help

file.

It might also be helpful to know that Stata allows commands to run both “noisily”

and “quietly”. The default in Stata is to show you the output/results of your commands -

this is known as running commands “noisily”. However, for example, if you are going to

use a regression output in another regression (as in an instrumental variables approach)

you may want Stata to skip its output/results for the first regression. This is mainly used

in conjunction with Do-File operations. To do this simply type quietly in front of your

primary command. For example, | quietly tabulate V083210 |, which will tabulate the

ANES gender variable and store it in memory without presenting the output/results.

3 Working with Data

Stata handles a combination of numeric and string variables. In the Variables window you

will see the name, label, and format of each variable. The name is a limited variable name

that we will use to tell Stata what variables to perform operations on. The label gives a

more detailed description of each variable. The format tells us whether the variable is a

string or a numeric variable — the string variable format will be followed by an s, while

the numeric variable format will be followed by a g.

3.1 Building Datasets from ASCII Text Files Using Do-Files and Dic-

tionary Files

This section will begin to look at how to manipulate data. One of the most important

skills to have when working with Stata is knowing how to use various Do-Files to create

21

Figure 8: 2008 ANES Time Series .zip

Stata data sets. Sometimes (more times than not) when data is posted online, it is posted

using an ASCII .txt file and a universal dictionary file with the extension “.dct”. This is

done so that a single text file can be used to create data sets in multiple statistical pack-

ages (SPSS, SAS, Stata, Minitab, etc.). I am going to use an example from the American

National Election Study (ANES) and use the ANES data to demonstrate several other

commands in Stata. You can follow all the steps in this section to practice building data

sets from Do-Files.

First go to the American National Election Study (ANES) website at http://www.

electionstudies.org/. Click on Data Center. I am going to use the 2008 ANES Time

Series Data for this demonstration. Click on download.zip file (all) and proceed to down-

load the .zip file containing all the files needed to build the data set. Figure 8 shows what

is inside the .zip file (I use the WinRAR compression program to unzip the files).

Notice how there are several .zip files within the original .zip file. Figure 9 shows the

22

http://www.electionstudies.org/
http://www.electionstudies.org/
http://www.electionstudies.org/
http://www.electionstudies.org/studypages/download/datacenter_all.htm
http://www.electionstudies.org/studypages/2008prepost/2008prepost.htm
http://www.electionstudies.org/studypages/2008prepost/2008prepost.htm
http://download.cnet.com/WinRAR-32-bit/3000-2250_4-10007677.html?tag=mncol;1

Figure 9: 2008 ANES Time Series Stata .zip File

files contained in the Stata.zip file. Figure 10 shows the contents of the Data ASCII.zip

file, which is the text file we will use to create our .dta file.

The next step is to unzip the necessary files to a directory on your computer. Initially

the files can be unzipped to any directory you want; however, we will need to change the

directory so that Stata can execute the Do-File. Open the Do-File called:

anes2008TS_run

This is the Do-File necessary to execute the command Stata will need to turn the raw

text and dictionary file into a .dta file. Figure 11 shows the contents of this Do-File. This

file tells the user the default directory that the Do-File requires all the files to be placed in

order for Stata to execute the commands and build the data set.

Most of the time, you will need to place the files within the C:\ directory — remem-

ber the “’́ character indicates a new folder. To use this data you will need to create the

23

Figure 10: 2008 ANES Time Series Data .zip File

Figure 11: 2008 ANES Time Series Do-File (Run)

24

directory path:

C:\ANES\anes2008TS\20100902

This will require you to: (1) create a new folder on the C:\ drive called “ANES”; (2)

Open the “ANES” folder and create a new folder within it called “anes2008TS”; and (3)

Open the “anes2008TS” folder and create a new folder within it called “20100902”. You

have now created the necessary directory path. Finally, you must place all of the neces-

sary files within the “20100902” folder — this includes all the files that were within the

anes2008TSprepost-2.zip file, the sub .zip file called stata statements.zip, and the sub .zip file

called data ASCII.zip. Once you have placed all the necessary files within the directory

path:

C:\ANES\anes2008TS\20100902

open the Do-File called “anes2008TS run” and click on execute. Stata will now run a

series of Do-Files and commands to use the .dct file to change the .txt file into a .dta file

and save it within

C:\ANES\anes2008TS\20100902.

On a final note, the codebook for this dataset is located within a .zip file within the original

.zip file called codebook MSword.zip. You can choose whether you want the .txt (ASCII)

version of the codebook or the Microsoft Word version of the codebook. I chose the MS

Word version and unzipped the three codebook files into the

C:\ANES\anes2008TS\20100902

directory. You will need the codebook in order to understand the how each variable in

the dataset is operationalized.

25

At this point you are free to retrieve the .dta file and place it in any directory you

wish. I also recommend using Stata to create a .csv file from the .dta file so that you have

a backup copy of the raw data. To do this simply click on File ⇒ Export ⇒ Comma or

Tab Separated data⇒ Leave the “Variables” box empty to make sure that all variables are

chosen⇒ Choose the file directory path and file name (make sure to use the drop down

menu in the “save as” box to select a .csv file)⇒ Click the “Comma-separated (instead of

tab-separated) format” under the delimiter section ⇒ Click on “Output numeric values

(not labels) of labeled variables ⇒ Finally, click “Submit” or “OK’. Now you will have

saved a .csv file which you can use as a backup. The 2008 ANES Time Series Study is now

ready to be manipulated within Stata. The ANES data set is not the only data which will

require this type of operation — much of the data from The Interuniversity Consortium

for Political and Social Research (ICPSR) will require a similar operation. The next section

will work with this data to demonstrate some basic statistics commands in Stata.

3.2 Labeling Variables

Before we move on to manipulating data it is important to understand how to label your

variables in a more intuitive way. For example, in the ANES data file we just created, the

variable “V081102” is the Race of the respondent. This particular ANES data file has full

labels for each variable; however, there will be times when you want to label your data.

The following commands can be used to label your variables and even give them value

labels:

Provide A Label for Your Variables:

• | label variable your variable name “The label you would like to give your variable”

|— This will allow the user to label their variables.

Replace a Variable’s Numeric Value with a Categorical Name (Requires Both Commands):

• | label define your label name numeric value “label” numeric value “label” ...|— This

26

tells Stata to add a new value label. Eg. | label define yesno 0 “yes” 1 “no” |.

• | label values variable1 variable2... the formerly created label you want to apply |— This

tells Stata to apply a label to a set of variables. Eg. | label values variableXyesno |.

After using the value labels set of commands you will only be able to see your label names

in place of the numeric values of the variable. To browse your data without label values

you can use the command | browse variable1 variable2..., nolabel |. One can also label the

entire dataset with the following commands:

Provide a Label for You Entire Dataset:

• | label data your data label | — This tells Stata to give a specific label to the entire

dataset.

3.3 Summary Statistics and Histograms

Summary statistics will allow the user to view several important properties of your data,

such as mean, standard deviation, number of observations, minimum value, and max-

imum value. To view the summary statistics of any of your variables simply type |

summarize variable name |. For example if you wanted to see the summary statistics asso-

ciated with the race (V081102) variable you would type | sum V081102 |. Users may also

want to tabulate different variables or cross-tabulate sets of variables. To do this you will

need the command | tabulate variable1 variable2... |. For example, say we want to cross-

tabulate the race and gender variables from the ANES dataset above. We would use the

command | tab V081101 V081102 |. Stata would then output the cross-tabulation which

appears in Figure 12.

This manual has its limits of course, so I am not able to mention every option of every

command. However, I want to stress that the help command in Stata will allow users to

27

Figure 12: Cross-Tabulation Gender and Race

view all the options associated with each command. For example, the tab command has

some useful options. Typing | tab variable1 variable2, column row | will allow the user to

view the relative frequency for each column and row, respectively. Viewing the help file

for each command will allow you to get acquainted with each command’s options, which

will often come in handy.

Finally, graphing a histogram can give you a good visual representation of the distri-

bution of your data. In Stata it is easy to generate a histogram. The command is | hist

your variable name |. Figure 13 shows the histogram of the 7-point self-identified ideology

variable in the ANES data.

3.4 Generate and Recode

This section will briefly cover how to generate and recode new and existing variables.

Sometimes it will be necessary to alter the way variables are constructed. For example, in

the ANES dataset the ”Gender” (V081101) variable is coded as 1=male and 2=female; as

you may know, dummy variables (variables that take on 2 discrete categories) often take

on the values of [0,1]. If we want to use Gender as a dummy variable in a regression anal-

ysis we will want to recode it. To do this we will use the generate and recode commands.

It is possible to use only the recode command to perform the desired operation; however,

I recommend generating a new variable and keeping the old variable intact. The reason is

that often times you will collapse a categorical variable with more than 2 categories into a

28

Figure 13: Histogram 7-Point Self Identified Ideology

dummy variable. If you use the recode command without generating a new variable first,

you will eliminate the original variable which you may need to use in its original form in

future analysis. Thus, I strongly recommend generating a new variable which is the same

as the variable you want to recode and then recoding the new variable, leaving the old

variable intact. Let me demonstrate what I mean. The following commands are used to

transform the ANES V081101 (Gender) variable into a standard dichotomous variable.

Generate and Recode

• | generate gender=V081101 | — This will create a new variable named “gender”

which is exactly the same as “V081101”.

• | replace gender=. if V081101==. | This tells Stata to replace any missing variables

in the original file with missing data in the new file as well, this is a necessary com-

mand to keep the integrity of your variables.

• | recode gender 1=0 2=1 | — This will recode the gender variable so that male=0

29

and female=1, instead of male=1 and female=2. You now have a standard dummy

variable to use in your analysis.

The generate command has the more general Stata syntax: | generate [type] new vari-

able name =exp |, where generate creates a new variable. The values of the variable are

specified by =exp. The replace command is used to change the contents of an existing

variable. As seen above, I am using the replace command to make sure that all missing

data in the original data is also missing in the new variable. The recode command is ex-

tremely useful; it is used to change the values of numeric variables according to the rules

specified. Values that do not meet any of the conditions of the rules are left unchanged,

unless an otherwise rule is specified. The general syntax for recode is: | recode your variable

(rule) [(rule) ...] |.

Another example should be helpful. In the ANES data “V081102” contains data on

each respondent’s race. Using the tab command we can see that: 1=White, 2=Black,

4=Other Race, 5=White and Other Race, 6=Black and other Race, and 7=White, Black

and other Race. We want to make this a useful categorical variable to be used in statis-

tical analysis. One way to do this is to create three Dummy Variables: (1) All Other=0,

White=1; (2) All Other=0, Black=1; and (3) White and Black=0, All Other=1. Each set of

code needed to make each variable is shown below:

White:

• | gen White=V081102 |

• | replace White=. if V081102==. |

• | recode White 2=0 4=0 5=0 6=0 7=0 1=1 |

Black:

• | gen Black=V081102 |

30

• | replace Black=. if V081102==. |

• | recode Black 1=0 2=1 4=0 5=0 6=0 7=0 |

All Other:

• | gen Other Race=V081102 |

• | replace Other Race=. if V081102==. |

• | recode Other Race 1=0 2=0 4=1 5=1 6=1 7=1 |

Now we have a set of Dummy Variables which can be used in a regression analysis.

Recall that the interpretation of any of these variables is against the out-group. Therefore,

if we use the variable White the coefficient would be interpreted in comparison to both

African Americans and all other races in the original variable. Learning how to generate

and recode existing variables is vital to using Stata for data manipulation.

4 Hypothesis Testing

Stata can easily conduct one-sample and two-sample hypothesis tests. We can test a mean

and test differences in means. A one-sample or single-sample hypothesis test, tests a claim

surrounding a variable’s mean. The Stata syntax for a single-sample hypothesis test is |

ttest varname |. The single-sample t-test compares the mean of the sample to a given num-

ber (which you supply). The independent samples t-test compares the difference in the

means from the two groups to a given value (usually 0). The dependent-sample or paired

t-test compares the difference in the means from the two variables measured on the same

set of observations to a given number (usually 0), while taking into account the fact that

the scores are not independent.

For example, let’s say we think that the population mean for for the variable “per-

cent of a state that voted for the democratic presidential candidate” (pervotedem) in the

31

dataset I compiled from the U.S. Statistical Abstract is equal to 50 percent. To test this

hypothesis in Stata we would type | ttest pervotedem==50 |. The output/results can be

viewed below.

Stata calculates the t-statistic and its p-value under the assumption that the sample

comes from an approximately normal distribution. If the p-value associated with the

t-test is small (0.05 is often used as the threshold), there is evidence that the mean is dif-

ferent from the hypothesized value. If the p-value associated with the t-test is not small

(p > 0.05), then the null hypothesis is not rejected and you can conclude that the mean is

not different from the hypothesized value (UCLA, N.d.) (The UCLA Academic Technol-

ogy Services “Statistical Computing” resources linked to this citation is great for a variety

information on Stata and statistics). Stata automatically runs 3 tests. Note that “!” is “not

equal” in Stata language. In the output/results, Ho is the null hypothesis that is being

tested. The single sample t-test evaluates the null hypothesis that the population mean is

equal to the given number. Each Ha is an alternative hypothesis which Stata tests for. In

this example, we reject the null that the population mean for our variable is equal to 50

percent and accept the alternative hypothesis that the mean is below 50 percent. We can

also accept the alternative hypothesis that the mean is not equal to 50 percent. Finally, we

must accept the null hypothesis and reject the alternative hypothesis that the population

mean is greater than 50 percent. The output/results gives all the information needed to

32

calculate the t-statistics by hand as well.

A paired t-test (or “dependent”) t-test is used when we know that the observations are

not independent of another. To do this we use the syntax | ttest varname==varname |. For

example, say we wanted to compare the “percent of the state that voted democratic” and

the “percent of the state that voted republican”; we know that the each state population

voted for both the Democratic candidate and the Republic candidate. For each state, we

are essentially looking at the differences in the values of the two variables and testing if

the mean of these differences is equal to zero. Below is the output/results from the paired

t-test.

Again, Stata gives us 3 tests. The null hypothesis in this case is that there is no mean

difference between the two variables. In this case we can reject all of the alternative hy-

potheses and accept the null — there is no difference in means between the percent of U.S.

states’ population that voted for the Democrat and the percent of U.S. states’ population

that voted for the Republican candidates.

Now, let’s look at an Independent Group t-test. This t-test is designed to compare

means of the same variable between two groups. To do this we use the syntax | ttest

33

varname, by(varname) |. For example, below I am going to compare the percent of the U.S.

states’ population that voted for the Democratic candidate between Southern and non-

Southern states. The test assumes that variances for the two populations are the same. The

interpretation for p-value is the same as in the other types of t-tests (and the observations

are supposed to be randomly selected from the larger population of observations — with

observational data we run into the problem of non-random assignment. See Arena (2009)

for a summary).

The above output/results indicates that the we must accept the null hypothesis for

the first t-test. The difference in means for the two groups (Southern and non-Souther

states) is not less than zero. For the second t-test we can reject the null and accept the

alternative hypothesis that the difference in mean between the two groups is not equal

to zero. Finally, we can reject the null and accept the hypothesis for the third t-test that

the mean difference between the two groups is greater than zero. Non-Southern states

between the years of 2006 and 2008 had a larger mean for percent of the population that

voted democrat than for Southern states. Thus, non-Southern states may be less likely to

have a larger percent of the their population vote for the Democratic party’s candidate.

34

Finally, we will conduct an Independent sample t-test assuming unequal variances.

We previously assumed that the variances for the two populations are the same. Here,

we will allow for unequal variances in our samples. To do this we use the syntax | ttest

varname, by(varname) unequal |. Reference the results below.

The results are exactly the same as before but the p-values are stronger. This section

has demonstrated how to use the ttest command to conduct a variety of hypothesis tests.

The next section will look at more advanced ways to tests relationships.

5 Introduction to Correlation and Regression

This section will briefly discuss a few commands that allow us to understand relation-

ships between our variables. First, we can use Pearson Correlations to tell us the magni-

tude and direction of the association between two variables. To do this we simply type

| corr variable 1 variable2... |. For example the correlation between a respondent report-

ing that they are a democrat and that respondent voting for President Obama in the 2008

election is .7352 — after transforming the relevant variables and renaming them the code

is as follows | corr dem voteobam |.

35

Another primary tool for most researchers is Ordinary Least Squares (OLS) Regres-

sion. To perform an OLS Regression in Stata you type: | reg depvar, indpvar1 indvar2

indvar3..., options |. One useful option when using the reg command is beta; using the

beta option tells Stata to report the standardized coefficients as well as unstandardized

coefficients. Standardized coefficients are the estimates resulting from an analysis carried

out on variables that have been standardized so that their variance is 1. This means that

they are in “standard deviation” terms or units and can be compared to each other. Recall

that unstandardized coefficients literally tell us the change in Y for every 1 unit change in

X. The problem is that more often than not the units of analysis for all of your variables are

different (for example dollars and percentage unemployed) and they cannot be directly

compared to each other. When the coefficients are standardized in standard deviation

terms they can be directly compared to each other and the researcher can tell which of

the variables has the largest impact. Figure 14 shows an example OLS regression analysis

which was performed using a set of recoded variables from the ANES 2008 time series

study. The Dependent Variable is the Felling Thermometer Score (Which ranges from 0-

100, so it is continuous) for President Obama. Table 1 uses the command | outtex, detail

legend | to produce the LATEXcode which can be copied and pasted directly into a .TeX

document. To use this command you will need the outtex plug-in which can be found by

typing | findit outtex | and then installing the package as discussed previously. Figure 15

shows the LATEX“outtex” code output which can be copied and pasted into any .TeX file.

5.1 Simple Post Estimation Commands

After you have run your regression you may want to test for some common modeling

problems. One such problem is multi-colinearity; this occurs when multiple explanatory

variables are moderate-highly correlated with each other. When this occurs the variables

provide redundant information. The consequences include inflated standard errors for

36

Figure 14: Sample OLS Regression

Figure 15: LATEXCode

37

Table 1: OLS Regression: President Obama Feeling Thermometer Score
Variable Coefficient (Std. Err.)

African American 15.527∗∗ (2.410)
Female 7.721∗∗ (1.956)
Read News Paper > 4 Times Per Week 2.880 (2.397)
Approve of Economy -1.772 (2.914)
Approve of Foreign Policy -17.229∗∗ (2.744)
The Economy is Better in Last Year -1.182 (1.090)
Liberal 5.750∗ (2.459)
Democrat 16.720∗∗ (2.530)
Education ≥ BA -0.493 (2.220)
Attend Church More than 3 Times a Month -5.221∗∗ (1.981)
Intercept 57.082∗∗ (3.380)

N 455
R2 0.504
F (10,444) 45.106
Significance levels : † : 10% ∗ : 5% ∗∗ : 1%

the unstandardized coefficients, incorrect p-values, and sometimes sign switches. One

way to test for this problem is to run a correlation matrix of all your independent vari-

ables using the | corr var1 var2 var3... |. This will allow you to look over the correlations

between your independent variables and see whether some of them are moderate-highly

correlated (a reasonably high correlation can be thought of as around .40 and higher).

Another common method is the computation of Variance Inflation Factor scores (VIFs).

To compute VIFs in Stata use the command | estat vif | after running your regression.

The general rule is that individual or average VIF scores greater than 10 indicate multi-

colinearity; although VIF scores over 2 have been know to be problematic.

Another important problem to test for is heteroscedasticity; OLS models makes the

assumption that the variance in the error term is constant (homoscedastic). Heteroscedas-

ticity (also written heteroskedasticity) violates this assumption of OLS and occurs when

errors increase as the value of an independent variable increases. It is vital to test for vio-

lations of the Gauss-Markov assumptions, one of which is the absence of heteroscedastic-

38

ity; thus making sure that we have the best linear unbiased estimate (BLUE). In Stata we

use the command | estat hettest | after running the regression. This will run a Breusch-

Pagan/Cook-Weisberg test for heteroskedasticity. The null hypothesis for this test is con-

stant variance. Thus, if the test comes out statistically significant — prob > χ = 0.005

or less — then the alternate hypothesis must be accepted, which would indicate non-

constant variance and heteroskedasticity. When heteroskedasticity is a problem you can

use robust standard errors to correct for the issue. To do this in Stata use the “r”option

after your standard regression command: | reg depvar indvar1 indvar2 indvar3, r |. Placing

the “r” in the options syntax will tell Stata to use robust standard errors when estimating

the model.

6 Advanced Regression Models

There will be many times when you need to add additional specifications to OLS (for ex-

ample robust standard errors above). For example, we want our independent variables to

explain as much about an observation as possible; however, sometimes there is some un-

modeled effect which goes into the error term. In some circumstances this un-modeled

effect may have to so with properties within our observations; for example, if the unit

of analysis is U.S. States, something about Texas or New York (which is laden and un-

modeled) may have a systematic effect on our prediction. To account for this we can run

a fixed effects regression model using the | xtreg | command. The syntax for a fixed effects

model is | xtreg depvar indvar1 indvar2 indvar3, fe |. This is essentially the same as adding

a dummy variable in the model for each case (i.e. U.S. States in my example). The out-

put/results are interpreted in the same way, except Stata gives us another F-test which

indicates whether the variance explained by each “group” is statistically significant in

the aggregate. Moreover, when using the | xtreg depvar indvar1 indvar2 indvar3, fe | com-

mand Stata presents an F-statistic only for those terms in which we are interested (the

39

ones that are listed in the output)instead of showing the F-test including the absorbed

terms (i.e. dummies for each observation). You can also use a random effects model which

essentially thinks of each intercept as the result of a random deviation from some mean

intercept. The command syntax for this model is | xtreg depvar indvar1 indvar2 indvar3,

re |. However, this method requires that we treat the ui (unobserved individual-specific

effect)terms as random variables and that they follow the normal distribution — this is

not always the case. Both of these models are controlling for unobserved individual or

observation-specific effects and are commonly used.

When using time-series cross-sectional data (i.e. panel-data), when we have the same

observations over multiple time periods (days, weeks, months, years) you should use

panel-corrected standard errors as advocated by Beck and Katz (1995). The Stata com-

mand for this regression is | xtpcse depvar indvar1 indvar2 indvar3 |. Moreover, in time-

series models you may have serial-autocorrelation. Autocorrelation means correlation

between successive values in the data (past data points correlate with the subsequent

data point). It mainly occurs when data is measured over time, and the values are not

independent of each other. To correct for this you can use the command | xtpcse depvar

indvar1 indvar2 indvar3, correlation (ar1) |. This is a common model used to estimate a

time-series OLS with panel corrected standard errors and autocorrelation correction.

7 Limited Dependent Variables Regression Models

In this section I will discuss two models — Logit and Probit — that are used when the

dependent variable is categorical or limited in the sense that it takes on a finite number of

discrete values, which can represent nominal categories. An example of a limited depen-

dent variable would be home ownership; one either owns a home or they do not. Another

example commonly used in political science is vote choice (i.e. Democrat or Republican

40

Candidate) or whether an individual voted at all (i.e. Voted or∼Voted). For International

Relations students a common example would be whether a war or crisis occurred or not.

It is clear that these models, which are sometimes called qualitative response models, are

important for political science research.

When using an OLS Regression model, we know that the Population Regression Func-

tion (PRF) is:

Yi = β1 + β2Xi + β3Xi...βnXi + ui (1)

We also know that the Sample Regression Function (SRF) is:

Ŷi = β̂1 + β̂2Xi + β̂3Xi...β̂nXi + ûi (2)

In these models the coefficients can be directly interpreted as “a one unit change in

Xi, produces a coefficient change in Y”. In this section we explore models where the

coefficients cannot be interpreted directly; instead they require a transformation based on

an underlying distribution function. First, we will look at the logistic distribution function

and then we will look at the probit model and the cumulative normal distribution.

7.1 Logistic Regression

The logistic distribution function is:

Pi = E(Y = 1|Xi) =
1

1 + e−(β1+β2Xi)
(3)

This can be written:

Pi =
1

1 + e−(β1+β2Xi)
=

e(β1+β2Xi)

1 + e(β1+β2Xi)
(4)

This could be the probability of voting Republican based on the independent variables

41

in the model. Thus, (1− P) would be the probability of not voting Republican, which can

be written:

1− Pi =
1

1 + e(β1+β2Xi)
(5)

Finally,

Pi

1− Pi
=

1 + e(β1+β2Xi)

1 + e−(β1+β2Xi)
= e(β1+β2Xi) (6)

is the odds ratio in favor of voting Republican, keeping with the example from above. If

we take the natural of equation 6 we get:

Li = ln(
Pi

1− Pi
) = β1 + β2Xi (7)

These equations and an in-depth explanation of the logistic model can be found in

Gujarati (2003), which is where this discussion was drawn. L, which is the log odds

ratio, is linear in X and also linear in the parameters. Li is the logit model, which is

commonly used to estimate modes with limited dependent variables. The next section

will cover a logit example, predicting a Respondent’s Vote for the Republican Party in the

2008 Presidential election.

7.2 Logit Example

The logit command is similar to the regress command for OLS. The Stata syntax for a logit

regression is | logit depvar indvar1 indvar2 indvar3..., options |. Table 2 is the logistic

regression output for a model that predicts a Respondent’s probability of voting for the

Republican Candidate in 2008 (John McCain). In this case the dependent variable equaled

1 if the respondent voted for John McCain and 0 otherwise.

The direction of the relationship can easily be obtained by looking at the sign of the co-

42

Table 2: Logit Model, Respondent Vote Republican in 2008
Variable Coefficient (Std. Err.)

Republican = 1 (Includes Leaners) 2.711∗∗ (0.217)
African American = 1 -3.738∗∗ (0.740)
Approve of Pres. Handle Economy = 1 1.475∗∗ (0.273)
Liberal to Conservative 1-7 0.487∗∗ (0.080)
Intercept -3.685∗∗ (0.338)

N 1116
Log-likelihood -331.639
χ2
(4) 816.859

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%

efficient. For example, there is a negative association between a respondent being African

American and voting for John McCain. There is a positive association between a respon-

dent saying that they approve of the way the President (in this case George W. Bush) han-

dled the economy and voting for John McCain. However, we want to know more than

the association, we want to know the probability that a respondent will vote for John Mc-

Cain given that they approved of the way George W. Bush handled the economy or the

probability of voting Republican based on different parameters of the other independent

variables. This requires the logistic distribution function or Pi above from equation 4. e is

the Base of Natural Logarithms and is approximately 2.71828. Let’s say that we wanted to

calculate the probability that a respondent would vote Republican based on the logistic

regression model estimated in Table 2. I will estimate the probability for the following

values of the independent variables:

• Republican = 1.

• African American = 0.

• Approve of the Economy = 1.

• Liberal to Conservative = 5 (Slightly Conservative).

To do this we need to utilize equation 4:

43

PVoteRep =
2.71828(−3.685+2.711∗1+−3.738∗0+1.475∗1+0.487∗5)

1 + 2.71828(−3.685+2.711∗1+−3.738∗0+1.475∗1+0.487∗5) = 0.949597528 (8)

In this case a respondent with the above characteristics based on the set of independent

variables has about a 95% chance of voting for the Republican Candidate (John McCain).

If we keep everything the same, except change the Liberal-Conservative value from 5

(slightly conservative) to 7 (very conservative), the same respondent would have about

a 98% chance of voting for John McCain. If we change the value of African American

to 1 (indicating that the respondent was African American) and keeping the Liberal-

Conservative value at 7 (indicating a very conservative respondent) the predicted proba-

bility of voting Republican drops to 0.542 or approximately 54.2%. If the respondent was

African American and only slightly conservative (5 on the liberal-conservative scale), the

predicted probability drops to about 33%. Using equation 4, we can manually calculate

the predicted probabilities for certain values of our independent variables. However, as

stated before, Tomz, Wittenberg and King (2003) have developed the Clarify add-on which

assists with calculating predicted probabilities using three simple commands.

The Clarify commands are as follows:

• | estsimp | (estimates the model and simulates its parameters).

• | setx | (sets values of Xs before simulating quantities of interest).

• | simqi | (simulates quantities of interest).

For example, if we wanted to estimate the same quantity as equation 8 we would use the

following set of commands:

• | estsimp logit VoteRep Rep Black AppPresEcon LibCon |.

• | setx Rep 1 Black 0 AppPresEcon 1 LibCon 5 |.

• | simqi |.

44

Figure 16: Logit Predicted Probabilities with Clarify

Figure 17: SPost Model Fit Commands (Logit)

The Stata output/results appear in Figure 16 and show the predicted probability of

voting Republican based on the values of the independent variables stated above. Notice

that Clarify also calculates the mean, standard error, and confidence intervals around the

prediction. Clarify will also calculate the predicted probabilities for each respondent. This

can also be done manually with the | predict | command discussed above.

Another great set of add-on commands for limited dependent variables is the SPost

package, from Long (1997). As we know, the pseudo R2 statistic that Stata reports is not

the best measure of model fit for logit and probit models. There are several others, for

example the Count R2 is Number o f Correct Predictions
Total Number o f Observations . The Count R2 and other measures of

fit can be computed easily with the SPost package. After finding and installing the SPost

package, run the | fitstat | command to get the output/results in Figure 17.

45

Figure 18: Probit Predicted Probabilities with Clarify

7.3 Probit Example

The probit model uses the normal cumulative distribution function (CDF) to estimate

models with limited dependent variables. Probit predicted probabilities are more com-

plicated to calculate by hand than their logit counterpart. Therefore, instead of focusing

on the math behind the Probit analysis I will simple demonstrate the commands neces-

sary to run a Probit model, which will be identical to the Logit model above. The Stata

syntax for a Probit model is | probit depvar indvar1 indvar2 indvar3..., options |.

Table 3: Probit Model, Respondent Vote Republican in 2008
Variable Coefficient (Std. Err.)

Republican = 1 (Includes Leaners) 1.607∗∗ (0.123)
African American = 1 -1.648∗∗ (0.281)
Approve of Pres. Handle Economy = 1 0.760∗∗ (0.145)
Liberal to Conservative 1-7 0.256∗∗ (0.043)
Intercept -2.033∗∗ (0.175)

N 1116
Log-likelihood -335.177
χ2
(4) 809.785

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%

The model in Table 3 is the probit estimation of the model used in the Logit example.

Figure 18 represents the predicted probabilities using Clarify for the example used above.

Figure 19 represents the model fit statistics using SPost. Notice that the results are similar

but not identical. Moreover, the commands to conduct the analysis are the same as in the

logit example; one just inserts “probit” for the former “logit” command. There are also

multinomial and ordered logit and probit models, which will be discussed next.

46

Figure 19: SPost Model Fit Commands (Probit)

8 Graphing in Stata: A Simple Example

This section will demonstrate how to graph predicted effects in Stata and place confidence

intervals around the prediction. Stata has several graphing commands that you should

become familiar with. First, we can make a simple scatter plot between two variables

using the the command | graph twoway (scatter var1 var2) |. This will produce a result

like that in Figure 16. The other graph command that will be useful, and is demonstrated

in this example, is | graph twoway (lfit var1 var2) |. This command produces a line which

had been linearly fit to the data. The following example will use a regression model pre-

dicting divorce rates in the U.S. from the 2006 to 2008. The data was obtained from the

U.S. Statistical Abstract.

First, we must run our regression model. Figure 17 shows the model as Stata out-

put/results and Table 2 is a presentation quality table which shows the label for each

variable. Next, we need the set of | predict | commands in Stata to get predicted values

for each observation. Below is a set of important predict commands and a summary of

their functions.

• | predict varname1, xb | Calculates a predicted values (ŷ) for each observation, and

saves it to a new variable called “varname1”.

• | predict varname2, r | Calculates the residual for each observation and saves it to a

47

Figure 20: Scatter Plot

Figure 21: OLS Predicting Divorce Rates

48

Table 4: OLS Predicting Divorce Rates
Variable Coefficient (Std. Err.)

Unemployment Percentage -3.459∗∗ (0.730)
Percent Christian Population -0.128 (0.082)
Percent Jewish Population 0.813 (0.711)
SCPI -0.031∗∗ (0.008)
Percent of Population with a BA or Greater -0.182 (0.222)
Number of Illicit Drug Crimes in Thousands 1.092† (0.599)
Percent Those Between Ages 18-24 0.011∗∗ (0.002)
Percent African American Population 0.104 (0.080)
Intercept 26.055∗∗ (7.779)

N 132
R2 0.511
F (8,123) 16.066
Significance levels : † : 10% ∗ : 5% ∗∗ : 1%

new variable called “varname2”.

• | predict varname3, stdp | Calculates the standard deviation of the prediction for

each observation, and saves it to a new variable called “varname3”.

We are going to use these commands to create a graph which visually illustrates the

effect of the percentage of the population which are Christians on Divorce rates for the

U.S. states from 2006-2008. First, I use the command | predict divhat |, which calculates a

predicted value for each observation in the dependent variable. I named it “divhat” be-

cause it is a prediction for divorce rates. Now let’s take a look at the linear fit overlaying a

scatter plot of our data by using the command: | graph twoway (scatter divhat perchrist)

(lfit divhat perchrist) |; where divhat is our predicted values, perchrist is the independent

variable for the percent of each state that is Christian, scatter is the command used to tell

Stata to create a scatter plot, and lfit is the command used to tell Stata to plot a linearly

fitted line. Figure 18 shows what this looks like.

Now we have a nice visual representation of the effect, but we are not finished yet.

49

Figure 22: Scatter Plot With Fitted Overlay

50

Presentation is important and scholars like to see 95% confidence intervals around the

estimate. To do this we will need to predict the standard deviation around each obser-

vation’s prediction. Using the commands from above we type: | predict stdpred, stdp |,

which creates the standard deviation for each predicted value and saves it as “stdpred”.

To create a 95% confidence interval we can simply add and subtract the product of the

critical value (1.96 or the more accurate critical value reported in the regression) multi-

plied by our newly calculated stdppred variable from our divhat prediction. Thus, the

Stata command would be:

• | gen lowerpred = divhat - 1.96 * stdpred | This generates a new variable for the

lower-bound on our prediction which I have called “lowerpred”.

• | gen upperpred = divhat + 1.96 * stdpred | This generates a new variable for the

upper-bound on our prediction which I have called “upperpred”.

Finally we can graph the effect of the predicted values with confidence intervals. The

Stata programming code would be:

| graph twoway (scatter numdiv1000 perchrist) (lfit divhat perchrist) (lfit lowerpred per-

christ) (lfit upperpred perchrist) |,

where each set of parentheses tells Stata to graph a separate fitted line. We will have

three lines on our graph: (1) Our linearly fitted prediction, (2) Our upper bound on the

prediction, and (3) Our lower bound on the prediction. Moreover, Stata will also overlay

these lines on top of a scatter plot. Notice how each part of the graph appears in a sep-

arate argument governed by a set of parentheses. Lastly, we can label our X and Y axes

using the same Stata code with added arguments:

| graph twoway (scatter numdiv1000 perchrist, msize(.2) jitter(2) ytitle(Divorce Rate per

51

Thousand People) xtitle(Percent Christian Population)) (lfit divhat perchrist) (lfit lower-

pred perchrist) (lfit upperpred perchrist) |

Notice that not we have added the commands “msize(.2)”, “ytitle()”, “xtitle()”, and

“jitter(2)” to the first set of parentheses. The “msize(.2)” simply tells Stata to make each

point on the scatter plot smaller because the default is quite large and can make the graph

look messy. The “ytitle()” and ‘xtitle()” options allow us to label the Y and X axes, respec-

tively. Finally, the “jitter(2)” command tells Stata to place each point of the scatter plot

closer to its estimate which can be used for ascetic reasons. Figure 19 represents the end

result. Lastly, you can also use the | mlabel(var1) | option within the set of scatter plot

parentheses to label each point on the scatter plot with its value. Figure 21 illustrates this

feature; notice that it can get quite messy.

Now, as you have postulated, Stata has a ”canned” package for producing graphs

with confidence intervals. The command is | graph twoway (scatter var1 var2) (lfitci

var1 var2) |. Simply adding “ci” to our lfit command tells Stata to calculate confidence

intervals and place them around our linearly fitted estimate. Figure 20 illustrates the

“canned” graph. Notice that there is a slight difference in my confidence intervals and

the ones Stata calculated; this is due to the fact that I used 1.96 as the critical value (t-

Statistic) instead of the precise critical value calculated by Stata. Essentially, it is up to the

user to decide if they want to manually create graphs or use the canned Stata package.

52

Figure 23: Estimated Effect with Confidence Intervals

53

Figure 24: Estimated Effect with Confidence Intervals Canned Stata Package

54

Figure 25: Estimated Effect with Confidence Intervals with Labels

55

References

Arena, Phil. 2009. “Explaining International Politics.”.
URL: http: // web. me. com/ filarena/ Site/ Teaching_ files/ explainingIR. pdf

Beck, Nathaniel and Jonathan N. Katz. 1995. “What to do (and not to do) with Time-Series
Cross-Section Data.” The American Political Science Review 89(3):634–647.

Gujarati, Damodar N. 2003. Basic Econometrics. Fourth ed. New York, NY: McGraw Hill.

Long, J. Scott. 1997. “Regression Models for Categorical and Limited Dependent Vari-
ables.” Advanced Quantitative Techniques in the Social Sciences 7.
URL: http: // www. indiana. edu/ ~ jslsoc/ spost. htm

Teele, Dawn L. 2010. “The Stata Bible 2.0.” Department of Political Science, Yale Univer-
sity.
URL: http: // statlab. stat. yale. edu/ workshops/

Tomz, Michael, Jason Wittenberg and Gary King. 2003. “CLARIFY: Software for Inter-
preting and Presenting Statistical Results.” Journal of Statistical Software 8.
URL: http: // gking. harvard. edu/ files/ abs/ making-abs. shtml

UCLA. N.d. “Statistical Computing.” UCLA Academic Technology Services.
URL: http: // www. ats. ucla. edu/ stat/ stata/ default. htm

56

http://web.me.com/filarena/Site/Teaching_files/explainingIR.pdf
http://www.indiana.edu/~jslsoc/spost.htm
http://statlab.stat.yale.edu/workshops/
http://gking.harvard.edu/files/abs/making-abs.shtml
http://www.ats.ucla.edu/stat/stata/default.htm

	Introduction: What is Stata?
	The Basics
	The Importance of Logging
	Directories
	Creating and Maintaining Log Files

	``Programming on the Fly'' vs. Do-Files
	Opening and Saving Stata (.dta) Files
	Importing Data
	Memory

	Do-Files
	Help
	Plug-ins

	Command Syntax
	Basic Command and Operators

	Working with Data
	Building Datasets from ASCII Text Files Using Do-Files and Dictionary Files
	Labeling Variables
	Summary Statistics and Histograms
	Generate and Recode

	Hypothesis Testing
	Introduction to Correlation and Regression
	Simple Post Estimation Commands

	Advanced Regression Models
	Limited Dependent Variables Regression Models
	Logistic Regression
	Logit Example
	Probit Example

	Graphing in Stata: A Simple Example

